太阳在人类社会中寓意着温暖、光明,而中国古代关于太阳的神话也不在少数——夸父逐日、后羿射日……似乎太阳在现实生话中是可望而不可即之物。
但近日一则“中国‘人造太阳’首次实现等离子体中心温度一亿度”迅速登上新闻头条,引发国内外广大关注。但此“人造太阳”非彼“太阳”,而是高11米,直径8米,重达400吨的第四代核聚变实验装置,也被称为“东方超环”。
核能利用不再是梦
随世界人口的增长,国家工业化的发展,人类对能源的需求越来越旺盛,20世纪90年代至21世纪初,人类能源消耗总量从102.569PWh增至143.851PWh。而目前,人类尚且以消耗化石能源为主,但化石能源是不可再生能源,据估计,在维持现有生产水平不变条件下,化石能源中煤炭仅可开采132年,天然气可开采49年,而石油仅可开采31年。化石能源的日渐枯竭以及它所造成的环境危害,使得如何研发出清洁可持续利用的能源成为当代急需解决的问题。
经过众多科学家的努力,在20世纪40年代发现了核裂变即由原子序数较大的分裂成为较轻的原子的一种核反应或放射性衰变过程。核裂变的发现,也为人类利用核能发电打开了一扇大门。1942年,费米建造芝加哥1号堆,利用核反应堆装置来启动、控制并维持核裂变,使核变的速率得到控制,从而向外释放出热能推动蒸汽机来发电。
目前世界上商业运转中的核电站都是利用核裂变反应发电。但核裂变反应堆的废料半衰期太长导致难以处理,以及核泄漏事故如福岛第一核电站在2011年因地震引起设备损害、辐射释放等核能灾害,使得约1300多人因病情恶化而死,而当地也至少要等50年才能居住。所以,人类现在更倾向于找到一个更清洁、可持续使用的能源。研究核聚变也成为了当代主要的科研方向。
核聚变即是将两个较轻的核结合形成较重的核,在此融合过程中,它们因产生质量亏损会释放出巨大的能量。1952年 11月1日美国在西太平洋埃尼威托克岛秘密爆炸了一颗氢弹,氢弹爆炸产生的巨大能量标志着人类核聚变实验的成功。随研究的不断加深,2005年部分科学家以经成功做出小型的核聚变并且得到初步的验证;对核聚变的了解的深入,核聚变产生的核废料半衰期极短,安全性更高,原材料氘可从海水中提取,氚可在核聚变反应中自然生成……这些优势使核聚变发电成为当代人类追求的目标,但目前来说,实现可控核聚变仍然任重而道远。
太阳的巨变反应与核聚变类似,太阳是利用其本身的巨大重力使气体在高温条件下,变成等离子体从而使氢聚变成氦形成核聚变反应,进而释放出巨大的能量。但地球上尚不满足形成等离子体所需的高温条件,要想使原子核克服其相斥的力量,则必须借用外力来适当的控制等离子体的温度、密度和封闭时间。目前,人类实现可控核聚变主要有两种方式:惯性约束聚变和磁约束聚变。
20世纪70年代初,因能源危机的爆发,以及激光器的成功即用光、电对其他物质进行激励使其中一部分粒子能量较高,进而物质会放大或振荡,美国劳伦斯利福摩尔国家实验室也获得大量资金用于激光惯性约束聚变项目研究。而国家点火设施(简称NIF)即激光型核聚变装置在此条件下建造成功,它利用多束激光光束同时照射环空器的一点上,从而造成高温高压快速加热容器表面使其等离子体化,形成向内的反作用力,使容器内的核元素形成自发性燃烧,最终产生链式反应诱发核聚变。
可控核聚变的另一重要方式是磁约束聚变,即主要利用磁场来约束因等离子体冷却引发反应停止的现象,使核聚变反应可持续发生。核聚变需要达到一亿度的高温方能发生反应,而除利用激光使其保持恒定温度外,目前只有通过磁约束来实现。实现磁约束,主要是在托卡马克装置内进行,利用其内部装置来维持强大的环形等离子体电流,以及外部线圈形成的螺旋形磁场约束等离子体达到高温恒定状态加热核燃料,使其产生核聚变反应。
博观约取,厚积薄发
1985年国际热核聚变实验反应堆即ITER项目开始设立,苏联、欧盟、美国、日本共同研究磁核聚变,但因苏联解体、资金耗费巨大等原因此项目未能得到很好的发展。
20世纪90年代初,中国与俄罗斯合作研发出HT-7即中国首个超导托卡马克装置;2003年,中国在HT-7的基础上进行技术改进,自主研发出全超导磁体托卡马克核聚变反应试验性装置,又被称为“人造太阳”即EAST。为更好的研究核聚变能源,2006年中国、美国、俄罗斯等七个成员国正式同意资助创造核聚变反应堆,发挥国际合作优势,促进核聚变研究进一步发展。中国作为国际热核聚变实验反应堆(以下简称ITER)联盟成员国之一,将EAST作为ITER项目技术的一个测试平台,不断探索推进磁约束核聚变研究。
多年来,中国在磁约束聚变研究方面取得了丰富的成果。2006年,EAST装置首次成功放电,意味着磁约束聚变取得初步成功;2016年1月,该装置成功实现了电子温度超过5千万度、持续时间达102秒的超高温长脉冲等离子体放电;2016年11月,获得超60秒的稳态高约束模等离子体放电;2018年该装置首次实现加热功率超过一亿兆瓦,等离子体储能增加到300千焦,等离子体中心温度首次达到一亿度……中国全超导托卡马克装置从首次成功放电到装置内电子温度的不断升高,这意味着实现磁约束聚变所需的条件已逐步满足,也意味着中国离在实现利用磁约束聚变发电又近了一步。
中国EAST装置不断取得突破,不仅为国际核聚变研究提供了方向,也为中国聚变工程实验堆(简称CFETR)的研究提供理论基础。
中国聚变工程实验堆于2017年12月5日在合肥正式启动工程设计,该项目旨在吸收ITER相关技术的基础上,预先开展下一代超导聚变堆研究。目前核聚变研究已取得三代核聚变堆成果,而该设施主要是为下一代聚变堆的超导磁体和偏滤器系统的完善提供研究和环境,保障我国聚变堆核心技术发展的先进性、安全性和可靠性。
同为核聚变装置,全超导托卡马克是实验装置,主要用作研究;而中国聚变工程实验堆是将研究走向实用化,以实现聚变能源为目标,直接瞄准未来聚变能市场的开发和应用。
立足当下,志存高远
国际热核聚变实验反应堆从20世纪70年代提出到2018年已历时40多年,组织规模相对成熟,组织架构日益完善,七国间合作更加密切,合作方向也更加明确。几十年来,ITER联合世界其他国家共同研究并组织建造托卡马克综合设施用于研究可控核聚变,致力于实现从等离子体物理实验理论研究到可控核聚变发电厂的转变。2006年七国正式同意资助建造核聚变反应堆,13年托卡马克建筑开始施工,ITER项目取得进展。而中国EAST装置也不断取得突破性成果。
如今,中国“人造太阳”首次实现等离子体中心温度一亿度,并且获得的多项试验参数接近未来聚变堆稳态运行模式所需要的物理条件,这一研究的成功意味着中国在磁聚变约束方面处于世界领先地位,更意味着中国离实现可控核聚变发电又近了一步,清洁可持续能源的实现指日可待。
目前来看,托卡马克已经可以实现可控核聚变了,而托卡马克综合设施建造所需的经费原本预计50亿欧元,但目前建造托卡马克设施已花费160亿欧元,已超预期约2倍,经济能力上来说已经入不敷出,暂时无法实现商业运行。而作为ITER项目之一的中国EAST装置虽取得突破性进展,但真正利用核聚变发电还有很长的路要走。EAST装置由超高真空室、纵场系统、极向场系统、内外冷屏、外真空杜瓦及支撑系统构成,所以建造装置工程浩大,而且仍需考虑资金、技术等因素,而核聚变发生也需要从海水中提取氘元素。所以,目前来说,磁约束核聚变真正投入市场进行商业化发电还需科研工作者以及人们共同支持。
在现实生活中,人类对新能源的需求越来越急迫,尤其是发达国家耗能巨大,如美国和欧盟2008年能源消耗量为26.6和24.4千TWh,在世界能源消耗总量中名列前茅。而为了探索新能源,人类也在不断地探索着。从对化石能源的开采到太阳能、潮汐能等新能源的利用,人类在能源研究利用方面不断取得进展。而核能作为新兴能源,为也为人类的发展作出重大贡献。2015年,核能发电2571365GWh,占全球总发电量10.6%。
总之,无论是惯性约束聚变亦是磁约束聚变取得进展,都意味着人类在核聚变研究方面取得成果,但想核聚变真正投入市场,还任重而道远。
http://www.dxsbao.com/shijian/157179.html 点此复制本页地址